Цемент в мешках

Портландцемент характеристики

Свойства портландцемента зависят от его химико-минералогического состава и тонкости помола. С увеличением содержания в цементе трехкальциевого силиката ускоряется набор прочности и растет ее величина, так как продукты, образующиеся при его твердении, обладают наивысшей прочностью из всех продуктов твердения цемента. С повышением содержания двухкальциевого силиката рост прочности в первые дни протекает медленно с последующим постепенным увеличением в течение длительного периода. Цементы, содержащие повышенное количество двухкальциевого силиката, более стойки к действию природных вод и попеременному замораживанию и оттаиванию.

В цементах с увеличенным содержанием трехкальциевого алюмината ускоряются сроки схватывания и рост прочности в первые дни твердения, снижаются морозостойкость и стойкость к действию агрессивных природных вод. Цементы с содержанием трехкальциевого алюмината менее 5 % называют низкоалю-минатными, более 8 % — высокоалюминатными.

С повышением тонкости помола цемента сокращаются сроки его схватывания, возрастают активность и интенсивность роста прочности.

Ниже приведены основные свойства и показатели портландцемента.

Плотность зерен р портландцемента колеблется в пределах 3050. 3150 кг/м3.

Насыпная плотность ри зависит от степени уплотнения. Для рыхлонасыпанного цемента она составляет 900. 1100 кг/м3, сильно уплотненного — 1600 кг/м3. В расчетах принимают значение р„= 1300 кг/м3.

Тонкость помола портландцемента оказывает большое влияние на его скорость твердения, прочность. Тонкость помола характеризуют зерновым составом портландцемента и удельной поверхностью. Зерновой состав определяют по ГОСТ 310.2-76 путем просеивания пробы цемента через сито № 008; при этом не менее 85 % пробы должно пройти через сито.

Тонкость помола цемента характеризуется также удельной поверхностью порошка — площадью зерен, см2, в одном грамме. Удельная поверхность обычного портландцемента составляет 2600. 3200 см2/г.

Водопотребность цемента характеризуют относительным количеством воды (в %) для получения цементного теста нормальной густоты. Содержание воды в тесте нормальной густоты соответствует ее максимальному количеству, которое цемент может удерживать с помощью химических и физико-химических (адсорбционных и капиллярных) сил. Поскольку в таком тесте еще нет водоотделения, цементное тесто нормальной густоты, скатываемое в шарик, не прилипает к ладони. Водопотребность цемента составляет 22. 28 %.

Чем меньше нормальная густота цемента, тем легче получить бетонную смесь с меньшим водоцементным отношением, а бетон — с меньшей пористостью и большей прочностью. И наоборот, с увеличением нормальной густоты, например у пуццолано-вого цемента она составляет 30 % и более, растет пористость и снижается морозостойкость бетона.

Пенобетонные блоки
Смотрите видео по теме

Смотрите видеоролик по теме

Сроки схватывания цементного теста нормальной густоты определяют на приборе Вика по глубине проникания иглы. Начало схватывания должно наступать не ранее чем через 45 мин, конец схватывания — не позднее 10 ч от начала затворения. Эти показатели определяют при температуре 20 ± 2 °С. Схватывание портландцемента обычно наступает через 1. 2 ч, а заканчивается — через 4. 6 ч. На сроки схватывания портландцемента влияют его минералогический состав, тонкость помола, температура теста, содержание воды и другие факторы.

Если бетонную или растворную смесь укладывать после начала схватывания, то, утратив пластичность, она при укладке будет деформироваться с нарушением сплошности структуры. В результате в теле бетона образуются разрывы, трещины и другие дефекты механического происхождения, что отрицательно скажется на прочности и долговечности конструкции.

На стройплощадке конец схватывания цемента в бетонной или растворной смеси (первоначально пластичной консистенции) можно установить следующим образом. Смесь набирают в руку и сжимают. После окончания схватывания на поверхности смеси при сжатии не блестит вода, а комок смеси растрескивается или рассыпается.

Сроки схватывания увеличиваются, если для затворения цемента взято больше воды. При ее избытке возрастает объем пространства в тесте, которое должно быть заполнено новообразованиями. Увеличивать количество воды в тесте или бетонной смеси ради удлинения сроков схватывания нерационально, так как прочность затвердевшего камня (бетона) тем меньше, чем больше введено воды. Целесообразно применять для этого специальные добавки — замедлители схватывания.

В практике бетонных работ иногда наблюдается ложное схватывание цемента, т. е. загустевание цементного теста или бетонной смеси в сроки, гораздо более короткие, чем предусмотрено стандартом (ранее 45 мин). Это объясняется тем, что в состав такого цемента входит полуводный гипс, а не гипсовый камень. Полуводный гипс быстро взаимодействует с водой, образуя пространственную малопрочную структуру, что и приводит к потере пластичности цементного теста уже через 10. 20 мин после затворения. При последующем перемешивании, особенно с небольшой добавкой воды, тесто восстанавливает пластичность и затвердевает как обычно.

Чтобы не допустить ложного схватывания, помол и хранение цементов осуществляют при пониженной температуре. Нельзя также допускать смешивание цементов разных видов.

Равномерность изменения объема при твердении — одно из необходимых свойств портландцемента. Если в составе цемента содержатся свободные оксиды кальция и магния — СаО и MgO, то при взаимодействии с водой в местах их расположения объем цементного камня увеличивается, что вызывает его коробление или растрескивание. Цементы должны выдерживать испытание на равномерность изменения объема при испытании образцов кипячением в воде. Содержание оксида магния MgO в исходном клинкере должно быть не более 5 %.

Тепловыделение, сопровождающее твердение портландцемента, обусловлено тем, что все реакции взаимодействия минералов цементного клинкера с водой экзотермичны. При укладке небольших объемов сильного разогрева бетона обычно не происходит, поскольку процесс растянут во времени и теплота теряется в окружающую среду. При твердении изделий в закрытом объеме (камерах тепловой обработки) тепловыделение может использоваться для ускорения твердения бетона.

Прочность портландцемента характеризуют маркой, которую устанавливают по пределу прочности при сжатии и изгибе образцов-балочек размером 40x40x160 мм, испытанных в возрасте 28 сут. твердения. Балочки изготовляют из цементно-песчаного раствора состава 1. 3 (цемент. нормальный (Вольский) песок) стандартной консистенции при водоцементном отношении В/Ц = 0,4. Образцы твердеют на воздухе (над водой) в течение 1 сут. и в воде комнатной температуры (без форм) -27 сут. Через 28 сут. балочки испытывают на изгиб, а образовавшиеся при этом половинки балочек — на сжатие. Среднее арифметическое значение предела прочности при сжатии, определенное по четырем наибольшим значениям, называют активностью цемента. Марку цемента устанавливают по пределу прочности при сжатии и изгибе

Если один из них меньше указанного в табл. 5, то цемент относят к меньшей марке. Например, при испытании получены значения Ясж = 52 МПа и RH = 6,3 МПа. Следовательно, цемент будет марки 500 (а не 550).

Прочность цемента при соответствующих условиях внешней среды со временем возрастает ( 38). Нормальными условиями твердения цементных материалов (строительного раствора и бетона) считают температуру 20 ± 2 °С и относительную влажность воздуха 95..Л00 %. При понижении температуры замедляются химические реакции взаимодействия цемента с водой. Это выражается в недоборе прочности (сравните кривые 1 и 2). Для ускорения твердения бетонные изделия обрабатывают насыщенным паром при температуре 60. 90 °С. Пропаривание позволяет за 10..Л5 ч получать отпускную прочность бетона, составляющую 70. 100 % от проектной 28-суточной (кривая 3). Тепловую обработку изделий надо проводить в условиях, исключающих высушивание бетона, так как вода необходима для синтеза кристаллогидратов цементного камня.

Коррозионная стойкость портландцемента характеризуется стойкостью цементного камня к действию проточной воды, а также вод, содержащих растворимые соли или кислоту. Коррозия цементного камня приводит к разрушению бетона или раствора.

Встречающиеся в практике коррозии можно разделить на три вида.

Коррозия первого вида обусловлена растворением и вымыванием (выщелачиванием) гидроксида кальция из цементного камня. Вслед за этим разлагаются гидросиликаты и гидроалюминаты кальция. Такая коррозия развивается наиболее интенсивно в мягких водах, содержащих небольшое количество солей. Наиболее эффективное средство борьбы с выщелачиванием -введение в состав цемента добавок, связывающих Са(ОН)2 в более стойкие соединения. Такие добавки, называемые активными минеральными, будут рассмотрены в 9.2.5.

Коррозия второго вида обусловлена взаимодействием Са(ОН)2 и других составных частей цементного камня с агрессивными веществами внешней среды. В результате этого образуются легкорастворимые соединения, которые вымываются из цементного камня, тем самым ослабляя его. К этому виду относится, например, кислотная и магнезиальная коррозии.

Под влиянием вод, содержащих угольную кислоту Н2С03, в результате ее реакции с гидроксидом кальция образуется хорошо растворимый бикарбонат кальция Са(НС03)2, который вымывается из цементного камня.

Свободные кислоты встречаются в сточных водах промышленных предприятий. Кислотная среда может возникнуть при конденсации на поверхности конструкций влаги, если в атмосфере содержатся агрессивные вещества — хлор, хлорид водорода, сернистый газ. Такая атмосфера характерна для современных промышленных центров. Попадающая в бетон кислота взаимодействует с Са(ОН)2. Образующийся при этом хлорид кальция легко растворяется в воде и вымывается.

Коррозия третьего вида характеризуется тем, что в результате взаимодействия со средой в порах цементного камня возникают новые твердофазные соединения, объем которых намного больше объема исходных продуктов реакции. Кристаллы этих соединений, увеличиваясь в объеме, давят на стенки пор, вызывая большие внутренние напряжения и растрескивание бетона. Наиболее ярко коррозия этого вида проявляется при действии на цементный камень сульфатных вод (сульфатная коррозия), в результате чего образуется увеличивающийся в объеме гидро-сульфоалюминат кальция ЗСаО • А1203 • 3CaS04 • 31Н20, вызывающий растрескивание цементного камня.

В практике редко встречается коррозия одного вида. Кроме того, трудно разграничивать коррозию, например, первого и второго видов. Однако почти всегда можно выделить преобладающий вид коррозии и с учетом коррозионных воздействий запроектировать мероприятия по защите конструкций от коррозии.

66
Цемент в мешках