Цемент в мешках

Сульфатостойкий портландцемент производители

Сульфатостойкие портландцементы

Технологическая схема производства сульфатостойких портландцементов не отличается от технологии получения портландцемента, однако при их выпуске осуществляется особо строгий производственный контроль. При подборе химико-минералогического состава сульфатостойкого портландцемента учитывали результаты исследований коррозиеустойчивости цементов различного состава при твердении в агрессивных средах.

Для повышения стойкости цемента при действии сульфатных растворов большое значение имеет минералогический состав исходного клинкера. Исследования С. Д. Окорокова показали, что сульфатостойкость портландцемента достигается при пониженном содержании С3А и умеренном количестве C3S. Исследовалась корро- зиеустойчивость синтетических клинкерных минералов в растворах сульфатов натрия, кальция и магния; показателем явилось.время, необходимое для получения опасного расширения]/до 0,5% особо тощих цементных растворов состава lTfO при 2ГС ( 15) .

Данные, приведенные в таблице, показывают, что C3S и C2S корродируются в растворе MgS04, но устойчивы в других сульфатных растворах, причем C2S оказывается более стойким, чем C3S. Добавка к каждому из этих силикатов кальция 20% С3А, хотя это и больше обычного его содержания в портландцементе, значительно ускоряет деформацию расширения; в меньшей

степени это проявляется при добавке C4AF. Хотя для исследования применялись весьма тощие смеси (1:10), что резко ускоряет коррозию, но результаты показывают, что стойкость более жирных смесей при ВЩ не выше 0,4—0,44 ненамного больше.

Роль химических факторов при сульфатной коррозии портландцемента видна из следующих данных ( 16).

Хотя выбранная концентрация ионов SOf" условна и не соответствует всей гамме анионов, например, в химическом составе морской воды, все же результаты этих исследований отчетливо показали, что существует взаимосвязь между содержанием C3S и С3А. Установлено также, что положительное влияние на сульфато- стойкость оказывает добавка 10% трепела. Можно видеть, однако, что одно лишь понижение содержания С3А в исходном клинкере не обеспечивает сульфатостой- кость портландцемента. Это объясняется тем, что при низком содержании СзА в цементе возможна не только гидросульфоалюминатная, но и гипсовая коррозия, поскольку гидратация C3S приводит к образованию значительного количества гидроксида кальция, создающего благоприятные условия для кристаллизации гипса. Так, например, цемент, содержащий 41% C3S и 5% С3А (без добавки трепела) обнаруживает при твердении в раст

воре сульфата натрия с концентрацией до 4000 мг/л большую коррозиеустойчивость, чем цемент с 3% С3А и 52% C3S, а также с 4% С3А и 48% C3S. Поэтому для снижения химической агрессии важно также по возможности уменьшать содержание C3S.

Пенобетонные блоки
Смотрите видео по теме

Смотрите видеоролик по теме

Известное значение имеет количество C4AF. Если его много, то цемент оказывается чувствительным к действию сульфатов, но он, несомненно, более устойчив, чем кристаллический С3А. При нормировании состава суль- фатостойкого портландцемента необходимо также учитывать и то, что он должен обладать повышенной морозостойкостью и пониженной экзотермией. При оценке сопротивляемости цементов попеременному действию замораживания и оттаивания при наличии сульфатной агрессии следует учитывать, что при испытаниях оттаивание образцов в агрессивной среде резко снижает показатели моростойкости. Так, например, наши исследования показали, что образец портландцементного раствора 1:3 при оттаивании в пресной воде выдерживает более 200 циклов, а при оттаивании в морской — только 30 циклов.

В теплом климате, где морозостойкость не играет заметной роли, в зонах бетона, находящихся в переменном уровне воды, происходит попеременное насыщение агрессивной водой бетона и последующее его высушивание. При этом проявляется также совокупное действие физических и химических факторов агрессии. Основная причина разрушения в данном случае кроется в действии преимущественно физических факторов, которые вызывают оседание солей агрессивной среды в порах цементного камня и их кристаллизацию, сопровождающуюся значительными объемными деформациями [51].

Повышение сульфатостойкости цементов, которое наблюдается при замене С3А на C4AF, увеличении количества стекловидного СзА за счет кристаллического С3А, введении активных минеральных добавок и пропарива- нии объясняется образованием гидрогранатов, устойчивых к действию сульфатов. Установлено, что с повышением температуры (<283 К) возможны более сильные разрушения. По данным Ф. М. Иванова с ссылкой на Наду [57], технология обжига и особенно режимы охлаждения в значительной степени влияют на сульфато- стой кость.

Пропаривание несколько улучшает, а запаривание в автоклаве значительно повышает сульфатостойкость. Проводились исследования, в которых устанавливалось время, необходимое для того, чтобы наступало расширение при твердении в сульфатных растворах цементных образцов состава 1:10, предварительно твердевших в течение 24 ч в воде, а также при обработке насыщенным паром при атмосферном и повышенном давлении.

Эти данные свидетельствуют о благоприятном влиянии тепловлажностной обработки на сульфатостойкость, так как при автоклавной обработке гидроксид кальния цемента реагирует с кремнеземом, содержащимся в заполнителях бетона; при карбонатном заполнителе тепло- влажностная обработка не повышает сульфатостойкость. Автоклавная обработка способствует также кристаллизации более стойких гидросиликатов кальция повышенной основности, а также образованию в результате гидратации клинкерного стекла гидрогранатов, общая формула которых ЗСаО(А, F)203-xSi02(6—2х)Н20, отличающихся высокой сульфатостойкостью. При этом следует учитывать, однако, что тепловлажностная обработка обычно не способствует повышению морозостойкости цементного камня.

В. И. Бабушкин [5] полагает, что разрушение бетона при действии сульфатов вызвано осмотическими силами. А. Е. Шейкин и Н. И. Олейникова [160] считают, что решающее влияние на сульфатостойкость оказывает относительный объем, занимаемый в цементном камне макропорами. Относительно низкую сульфатостой-кость можно повысить введением золы-уноса. Сульфа- тостойкие цементы обладают по сравнению с обычным повышенной сульфатостойкостью и пониженной экзотер- мией при замедленной интенсивности твердения в начальные сроки.

Исследования Ф. М. Иванова и Г. С. Рояка явились основанием для разработки сульфатостойкого портландцемента с минеральными добавками [53]. Цементная промышленность выпускает сульфатостойкие цементы, которые по вещественному составу подразделяются на сульфатостойкий портландцемент, сульфатостойкий портландцемент с минеральными добавками, сульфатостойкий шлакопортландцемент. Чтобы определить пригодность активных минеральных добавок для получения сульфатостойких портландцементов, измеряют расширение образцов цемента с исследуемой добавкой, твердевшего в агрессивных средах.

Сульфатостойкие портландцемента характеризуются более низким выделением тепла при гидратации и применяются, главным образом, в массивных элементах

гидротехнических сооружений, где требуется пониженная экзотермия [155]. В некоторых странах выпускаются специальные низкотермичные цементы; у нас сульфато- стойкие портландцемента являются и низкотермичными, поскольку содержание в них наиболее «термичных» клинкерных фаз — С3А и алита ограничивают за счет соответствующего увеличения количества белита и алю- ;.:оферрита кальция.

Объем производства этих видов цемента ограничен в связи с тем, что на большинстве цементных заводов нет глинистого компонента с низким содержанием глинозема, при котором в процессе обжига на беззольном топливе можно получать клинкер, содержащий менее 5% ЗСа0-А1203. Сложность задачи получения сульфатостой- кого клинкера состоит еще в том, что в нем ограничивается и содержание C4AF, так что количество оксида железа в клинкере должно быть также умеренным.

Удельная поверхность цемента должна быть обычной (2500—3000 см2/г). Следует обеспечить получение цементного камня, отличающегося пониженной усадкой, а также высокой плотностью и водонепроницаемостью и соответственно повышенной морозостойкостью и суль- фатостойкостью. Заметное влияние на повышение морозостойкости сульфатостойких портландцементов при испытании в бетоне оказывают длительность предварительного твердения до начала испытаний, значение В/Ц и удельный расход цемента. А. М. Подвальный, развивая представления о морозном разрушении бетона, показал, что увеличение объема цементного камня в бетоне приводит к повышению его морозостойкости [158].

В особо суровых условиях попеременного замораживания и оттаивания в морской воде при большой частоте циклов для достижения высокой морозостойкости в состав цемента или бетона вводят добавки. Это поверхностно-активные вещества: сульфитно-дрожжевая бражка, мылонафт, смола нейтрализованная воздухововле- кающая (СНВ), 50%-ная кремнийорганическая эмульсия ГКЖ-94 И др. При испытании пропаренных образцов бетона на сульфатостойком портландцементе в суровых условиях Баренцева моря были получены весьма благоприятные результаты при введении в его состав 0,01—0,05% СНВ от массы цемента. Аналогичный эффект получен в тех же условиях агрессии при применении 0,04—0,08% добавки ГКЖ-94. Особо высокая моро- зостойкость достигается при комплексных добавках СДБ и ГКЖ-94, СДБ и СНВ.

Сульфатостойкий портландцемент предназначается для бетонных и железобетонных конструкций наружных* зон гидротехнических и других сооружений, работающих в условиях сульфатной агрессии, при систематическом многократном попеременном замораживании и оттаивании либо увлажнении и высыхании. Например, для бетонов Братской ГЭС использовали цемент с расчетным содержанием C3S — 50 ±5% и СзА менее 8%. Теплота гидратации лимитировалась 251,4 Дж/ч за 7 сут твердения. Содержание щелочей в портландцементе не превышало 0,6% (в пересчете на Na20) для предупреждения коррозии бетона в случае попадания в состав заполнителей бетона пород, способных к взаимодействию со щелочами цемента. Для подводных частей морских’ и океанских сооружений технически более рационально’ и экономично применять сульфатостойкий шлакопорт- ландцемент. Нормативными документами допускается применение сульфатостойкого портландцемента в бетонах различной плотности для напорных и безнапорных сооружений при различной степени фильтрации грунта и агрессивности жидкой среды, характеризуемой высокой концентрацией ионов SC>4

Такой цемент известен как сульфатостойкий портландцемент. Специального Британского стандарта для этого цемента не существует, и считают.

По вещественному составу сульфатостойкие цементы подразделяют на виды; сульфатостойкий портландцемент.

По ГОСТ 22266—76 (с изм.), к группе сульфатостойких цементов относятся: сульфатостойкий портландцемент (без добавок); сульфатостойкий портландцемент с.

Сульфатостойкий цемент (портландцемент ). Сульфатостойкий цемент отличается от обычного повы

• указание вида цементасульфатостойкий портландцемент (ССПЦ), сульфатостойкий портландцемент с

66
Цемент в мешках